
Visualizing Routing Incidents in **3D**

Doug Madory Director of Internet Analysis

PTNOG 4 Lisbon, PT 5 December 2019

Scourge of route leaks continue

Impact often measured simply by prefix count

"It all started when new internet routes for more than **20,000 IP address prefixes** – roughly two per cent of the internet – were wrongly announced..."

'Normally you'd filter it out if some small provider said they own the internet'

By Kieren McCarthy in San Francisco 24 Jun 2019 at 19:01 61 ☐ SHARE ▼

Updated Verizon sent a big chunk of the internet down a black hole this morning – and caused outages at Cloudflare, Facebook, Amazon, and others – after it wrongly accepted a network misconfiguration from a small ISP in Pennsylvania, USA.

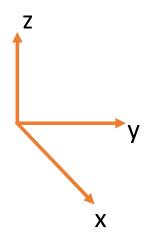
"...Safe Host improperly updated its routers to advertise it was the proper path to reach what eventually would become more than **70,000 Internet routes**..."

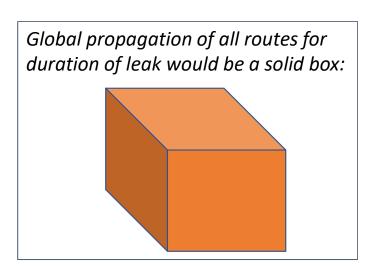
Prefix count is one-dimensional and lacks nuance

"more than 20,000 IP address prefixes"

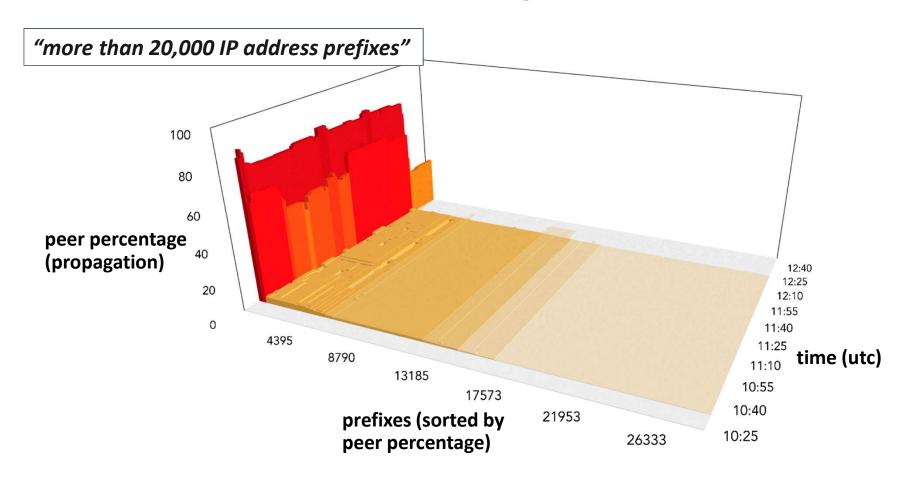
"more than 70,000 Internet routes"

Weaknesses of a one-dimensional measure of a leak

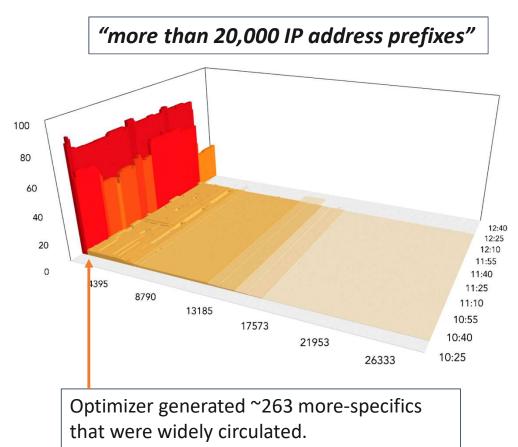

- Not every leaked route is accepted by the same number of ASes
- Not every leaked route is in circulation for the same amount of time
- There is often a long tail of prefixes that didn't propagate far or for very long, but are included in the "prefix count" metric.


"There has to be a better way!"

"more than 20,000 IP address prefixes"


"more than 70,000 Internet routes"

- Need to include propagation and duration to improve our understanding
- Resulting in a 3-dimensional view of an incident:
 - prefixes (x-axis), duration (y-axis), propagation (z-axis)



3-dimensional view of routing leak

Analysis of potential RPKI filtering

26873 RPKI:UNKNOWN
2145 RPKI:VALID

how the 29k leaked routes would have fared:

Had RPKI invalids been dropped during the leak, here's

130 RPKI:INVALID_LENGTH
28 RPKI:INVALID_ASN

- RPKI would have only filtered 158 leaked routes (0.5%)
 - 66 of 80 Cloudflare prefixes
- A lot of work remains to be done to reduce the incidences of RPKI:UNKNOWN, but there were 13x more RPKI:VALID than RPKI:INVALID

This analysis can be automated!!

- New website will be available at: {URL TBD}
- Will publish interactive autopsies of significant routing leaks soon after they occur.*
- In addition, a history of previous incidents will be available for comparison and research.

192.254.232.0/21 US

46606

12:10

11:40

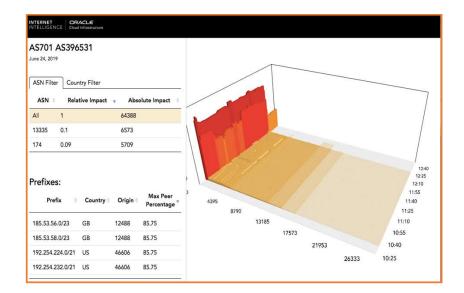
11:25

11:10

10:55

10:40

10:25

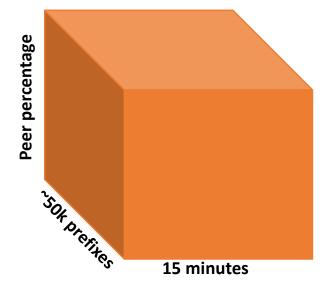

26333

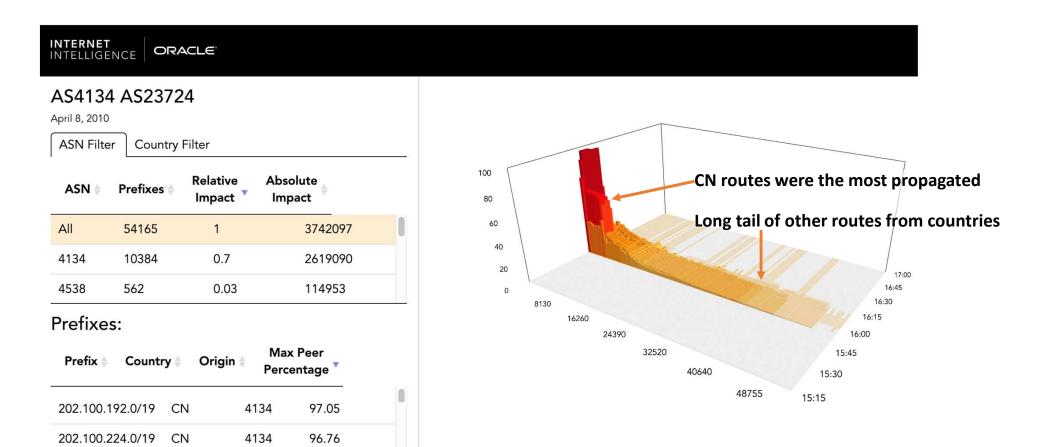
^{*}Significant = More than 100 prefixes and seen by at least 10% of our peer set

^{*}Soon = As soon as we can verify the analysis.

Explore a routing incident using filters

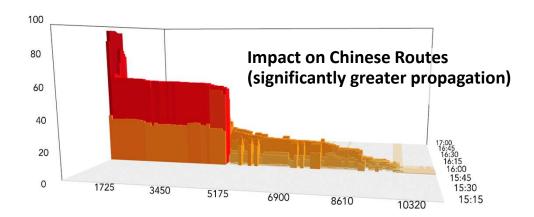
- Interface includes filters by origin & country-level geo.
- Lists most affected prefixes by max peer percentage for any selected origin or country.
- List of most impacted origins and countries by impact:
 - Impact = sum(area under curve for selected filter)
- Absolute impacts from different incidents can be directly compared.

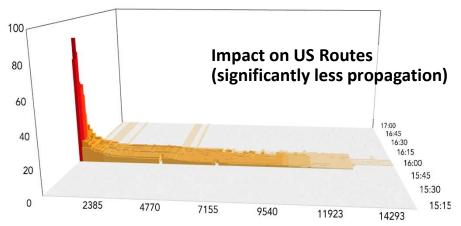




"15% of internet traffic for 18 minutes"

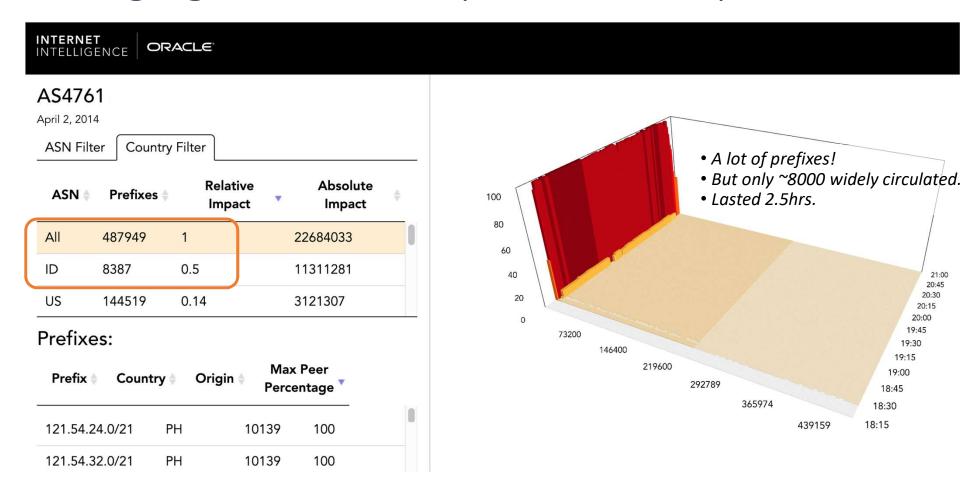
- Obviously, biggest problem: routes != traffic
- But also, not all of the routes were widely circulated
- For argument's sake, let's we assume routes = traffic
 - If 15% of all traffic was redirected, each route would need to be propagated to 100% of the internet. Like this ->
- It was isn't even close.

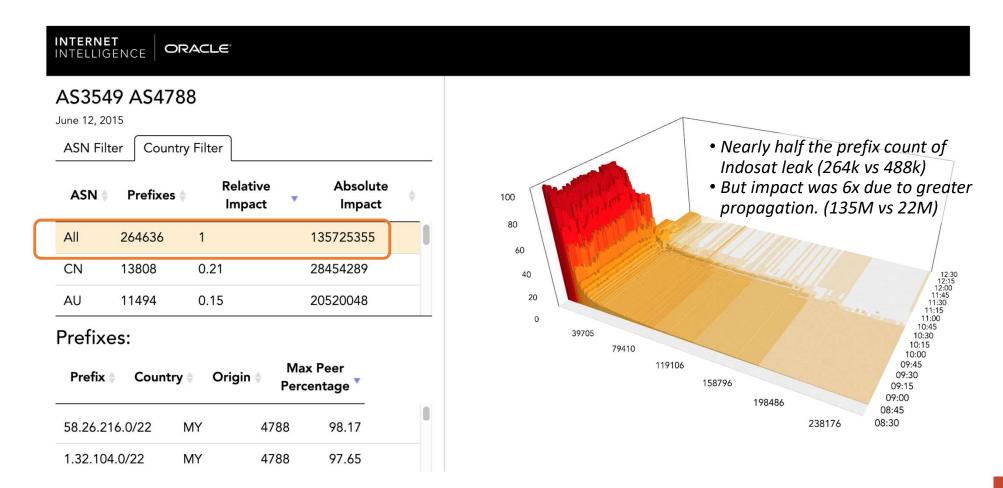



 Better than simply counting prefixes, we can measure "impact" by aggregate propagation:

pfx_count * duration * peer_percentage

ASN Filter ASN Pr	Country Filt	Relative	AI
ASN ∳ Pr	efixes 🛦	Relative	
	CIIACS	Impact	Absolute Impact
All 541	165 1	Ŷ	3742097
CN 114	160 0.	74	2756164
US 158	373 0.	08	290987

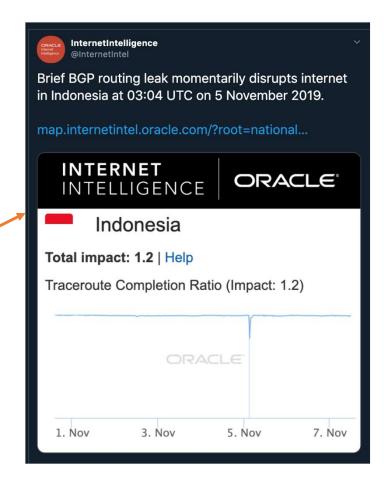

- 74% (CN) vs 8% (US)
- Impact was only 4.6% of theoretical max



* Widely propagated US prefixes due to prepending

Revisiting big leaks from the past: Indosat, April 2014

Revisiting big leaks from the past: TMnet, June 2015

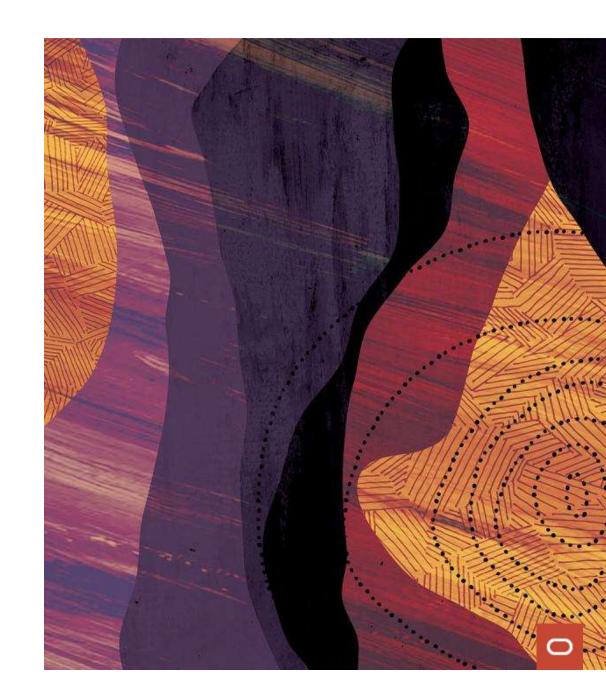

Biggest impacts of all time!

• Using the same formula for impact, we can compare different events through time.

<u>Top 5</u>

<u>Leaker</u>	Impact	<u>Date</u> .
AS4788	135,725,355	Jun 12, 2015
AS4761	22,684,033	Apr 2, 2014
AS41095	22,272,707	Oct 10, 2019
AS3303	10,959,010	Feb 19, 2019
AS58944	8,279,144	Nov 5, 2019

• Skewed towards more recent events due to growth of global routing table.

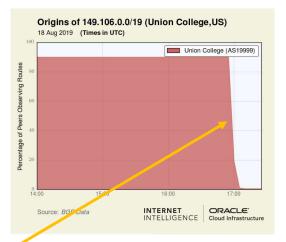


Conclusion

- We need to include the dimensions of propagation and duration.
- It's time we had a better metric than simply prefix count.
 - Suggestion: Count of leaked prefixes seen by >1% of peers.
 - More esoteric suggestion: Impact as measured by aggregate propagation
- RPKI can help contain leaks but needs greater participation
 - More signed routes & more dropping of invalids
- We hope that these interactive routing leak autopsies will help inform discussion around routing leaks.

Stop saying China Telecom hijacked 15% of internet! @

Safe harbor statement


The following is intended to outline our general product direction. It is intended for information purposes only, and may not be incorporated into any contract. It is not a commitment to deliver any material, code, or functionality, and should not be relied upon in making purchasing decisions.

The development, release, timing, and pricing of any features or functionality described for Oracle's products may change and remains at the sole discretion of Oracle Corporation.

Don't we already have BGP leak analyzers?

- Jared Mauch's leakinfo.cgi and BGPstream take similar approaches of looking for three "BIG" networks in the AS path of a BGP message
- This message-by-message approach gets dominated by ephemeral "leaks" which exist only momentarily during convergence from one routing state to another.
- Most often ephemeral leaks occur when a prefix is withdrawn and ASes frantically exchange routing info to exchange a viable route.
- Ephemeral leaks help identify where filtering it lacking, but generally have little operational impact due to their brevity.

Conrob this data

Search this data						
Source	Time	Prefix	AS_PATH	Contact?	Score	blame_asr
rrc00-45.12.69.254-1566148361.43-8023399	2019-08-18 13:12:41.945465	170.244.168.0/22	58057 34549 3320 701 5511 52468 267858	3320	3	3320
rrc00-80.77.16.114-1566148361.52-5260667	2019-08-18 13:12:41.661801	170.244.168.0/22	34549 3320 751 5511 52468 267858	3320	3	3320
rrc00-80.77.16.114-1566148361.52-5260661	2019-08-18 13:12:41.619739	170.244.168.0/22	34549 3320 701 5511 52468 267858	3320	3	3320
http://archive.routeviews.org/bgpdata/2019.08/UPDATES/updates.20190818.1645.bz2	2019-08-18 13:02:54.8381	149.106.96.0/19	3561 3910 3356 2914 13536 13536 19999	3561	3	3910
http://archive.routeviews.org/bgpdata/2019.08/UPDATES/updates.20190818.1645.bz2	2019-08-18 13:02:54.835821	149.106.0.0/19	3561 3910 3356 2914 13536 13536 19999	3561	3	3910
http://archive.routeviews.org/bgpdata/2019.08/UPDATES/updates.20190818.1645.bz2	2019-08-18 13:02:54.833508	149.106.64.0/19	3561 3910 3356 2914 13536 13536 19999	3561	3	3910

